
V1.0.2 Json2GeoJSON.py February 21, 2022

1

Table of Contents

Overview .. 2

Requirements ... 2

Capabilities and Workflow options.. 3

Input INI file structure... 4

Command-Line Usage / Execution... 13

Command-Line Input Parameters ... 13

Command-Line Examples .. 14

Guidance, Limitations, and Known Issues .. 15

Release History ... 16

V1.0.2 Json2GeoJSON.py February 21, 2022

2

Overview

The Json2GeoJSON.py Python script is a Conversion routine designed to be run by the OverwriteFS.py
script. The purpose of this script is to read Json data files and convert then to GeoJSON feature
collection files. Geographic data is recorded as GeoJSON Geometries. Content without a Geometry will
be assigned a Point location of Latitude and Longitude of 0, 0. If Longitude and Latitude fields are
provided, using the ‘xField’ and ‘yField’ properties, this script will convert the values to Point features.
Multiple Geometry feature types are supported (point, line, and polygon), creating one layer per

geometry type. Also supports Multi-Part Geometries per Feature of the same type.

This routine will generate a Text INI file alongside the input file. This INI file can be used to Order and
Name the fields that are written to the GeoJSON output file for Overwriting or updating a Service. The
INI file also allows for data extraction from the field value before saving, supporting simple search,
offset, and length operations along with Concatenation and basic math for field conversions. Example
would be to extract properties from Comment or Description text in the data and save as separate
fields. Or to convert speed of Mph to Km/h.

This script allows for the detection and comparison of the Last Publication date/time to the current
publication based on element entries of ‘pubDate’, ‘published’, ‘generated’ and ‘lastBuildDate’. If
there has been no change, it returns an empty string to the calling routine (OverwriteFS.py script). This
indicates no change to the data and therefore makes no change to the service. This feature can be
turned off by including ‘False’ as the first optional parameter when calling the routine. The most
recent Publication date is stored in the INI file’s properties section.

Requirements

1. Python 3.x or Python Notebook
2. Access to dependent script ‘datetimeUtils.py’ in ‘Support’ folder
3. A source Json or GeoJSON formatted file.

V1.0.2 Json2GeoJSON.py February 21, 2022

3

Capabilities and Workflow options

• Json ‘key: value’ pairs make up the source data. Where the ‘key’ Element names are used as field
names. The Element ‘value’ is used as the field data. See the INI description for options on
extracting specific content from an Element’s text.

• Fields can be included that have no Element source. The INI field Default value can be used to
hydrate the field data, or the field Type default will be assigned.

• Fields can be created from a source Element data by extracting content using the INI field
definition. Field data can be extracted, concatenated, or manipulated as needed. Fields can be
created using specified text or values, then altered using existing field data.

• The list of Items read from the Json will default to ‘features’ for GeoJSON. A user can specify a
“Root Element” to access if the item list is named differently.

• Geometry construction can originate X, Y, and Z coordinate values to come from field content. The
Z coordinate of existing Geometries can be added using a specified Z-Field or altered using an
Offset or Product value.

V1.0.2 Json2GeoJSON.py February 21, 2022

4

Input INI file structure

When reading the input data file, this script will generate and maintain a Text based INI file that
retains details specific to the input file, like feed properties and field definitions. The INI file will be

named after the input filename and will be placed alongside the input file.

The INI file structure follows the typical INI structure yet includes some additions that allow for data
extraction and creation of new fields. The structure contains Two ‘Key=Value’ style properties groups

consisting of a set of ‘Processing’ properties and ‘File’ Field properties. See following format:

- The ‘[properties]’ or ‘processing section’ contains feed specific processing details that are carried
from run to run.

o ‘lastPublicationDate’ stores the Publication Date of the most recent Json file. This is
compared to the next download to determine if there is a change in the publication data.

o ‘rootElement’ stores the list element name that should be processed to generate the
GeoJSON data output. One item in the list per feature output. Default is ‘features’ for
GeoJSON formatted input files.

o ‘flattenData’ is set as a True or False flag that tells the script to flatten all Sub-Elements

(or Dictionary elements) into fields. True turns on flattening and False turns it off. When
enabled, the generated field names will include (<element>_<sub-element>_<sub-
element>_...) when the ‘flattenNames’ property is set to False. Default is True

o ‘flattenNames’ is set as a True or False flag that tells the script to flatten the field Name

for all Sub-Elements to use only the ‘<sub-element>’ name when set to True. See
‘flattenData’ property for False setting. Only valid when ‘flattenData’ is True. Default is
True

o ‘exclude’ is available when ‘flattenData’ is True. This allows you to specify the Element

name NOT to flatten. This supports one Element per ‘exclude’ property, include as many
‘exclude’ properties as needed!

[properties]

lastPublicationDate = 2021/09/04 07:40:23

rootElement = <’item’ Element Name>

flattenData = True

flattenNames = True

exclude = <Element Name>

exclude = <...>

trimOuterSpaces = True

allowNulls = True

xField = <X or Longitude Field Name>

yField = <Y or Latitude Field Name>

zField = <Z or Elevation Field Name>

zFactor = <Float or Integer Z Multiplier>

zOffset = <Float or Integer Z Incrementor>

[<input filename>.json]

<Element Name> = <output field name> [<output field type> [<optional properties>]]

<Element Name> = <output field name> [<output field type> [<optional properties>]]

<...>

V1.0.2 Json2GeoJSON.py February 21, 2022

5

o ‘trimOuterSpaces’ is set as a True or False flag that tells the script to trim leading and

trailing spaces from the field when reading or extracting data. Default is True

o ‘allowNulls’ is set as a True or False flag that tells the script to output Null field values

when the data is empty, or the value is the same as the <output field type> Default value.
Default is True

o ‘xField’ is set as a the <output field name> that will contain the Longitude or ‘X’

coordinate value used to populate the Point Geometry field when no other Geometry
value is available. * Note * Only valid for Point Geometries and MUST be an Integer or
Float <output field type>!

o ‘yField’ is set as a the <output field name> that will contain the Latitude or ‘Y’ coordinate

value used to populate the Point Geometry field when no other Geometry value is
available. * Note * Only valid for Point Geometries and MUST be an Integer or Float
<output field type>!

o ‘zField’ is set as a the <output field name> that will contain the Depth / Elevation or ‘Z’

coordinate value used to populate the Point Geometry field when no other Geometry
value is available. If the row contains a Geometry, but does not include a Z value, setting
this property will add a Z value to the existing Geometry! * Note * Only valid for Point or
Multi-Point Geometries and MUST be an Integer or Float <output field type>!

o ‘zFactor’ is set as a float or integer value that can be used to Multiply the ‘Z’ coordinate

value, used to alter, or exaggerate the Point Geometry’s elevation or depth. If no
Geometry value is available or the Geometry does not include a Z coordinate, no changes
will be made! This feature can be used to alter the absolute Depth reading, setting it to a
Negative Elevation. Like changing a 14km deep Earthquake into a -14,000m elevation
value by multiplying the depth by -1000. Default value is 1. * Note * Only valid for Point
or Multi-Point Geometries!

o ‘zOffset’ is set as a float or integer value that can be used to Add or Subtract from the ‘Z’

coordinate value, used to alter, or exaggerate the Point Geometry’s elevation or depth. If
no Geometry value is available or the Geometry does not contain a Z coordinate, no
changes will be made! Default is 0. * Note * Only valid for Point or Multi-Point
Geometries!

V1.0.2 Json2GeoJSON.py February 21, 2022

6

- The ‘[<input filename>.json]’ or ‘fields section’ contains field layout details for the input file.
o ‘<element name>’ is Required and will contain the Element name identified in the Json

data, or the <output field name> of any field processed prior to this field (above it in the
list of fields) if a matching Element name is not available. The Value for the field will be
pulled from this Element’s content. Elements that do not exist in the Json data can be
defined in the INI file, adding fields to the output. These fields can be schema additions
for later computation or stand ins for fields that have not yet been created in the Json.
For computed fields, this can be ‘NonOp’ (non-operational) or some other nondescript
name, as it has no real Element source.

o ‘<output field name>’ is Required and will become the field name in the output file. The
field name is initially assigned base on the Element name and if the ‘flattenNames’
property is used. In cases where a name already exists, a numbering scheme of 2; 3; 4;
and so on will be added to the right side of the name for uniqueness, this applies to both
the Element Name and the Field Name. Ex. Multiple ‘data_value’ fields become
‘data_value’, ‘data_value2’, ‘data_value3’, and so on. * Note * The maximum number of
characters accepted is 31, ArcGIS Online will truncate field names longer than this, with
unique names being lost. Field output is disabled. Default is the same as <element
name>. A message is displayed if length exceeded!

o ‘<output field type>’ is Optional, containing the suggested field type that should be used
in the Service. * Note * This is based on the field contents and is ultimately set by the
Publishing logic during the Overwrite. If the specified type is ‘date’, the field value will be
examined for any Date/Time content using the ‘datetimeUtils’ routine, it can even detect
an Epoch value! Supported types include:

▪ ‘text’ is a string character array field. This is the Default field type!

• Default value is an empty string: “”
▪ ‘integer’ is a 32-bit integer number field. Value output is a Json Number!

• Default value is integer: 0
▪ ‘float’ is a Double-Precision floating point field. Value output is a Json Number!

• Default value is float: 0.0
▪ ‘date’ is a Date/Time field. Value output is a text Date/Time string!

• Default value is epoch 0, as date string: “1970/01/01T00:00:00”

o ‘[<optional properties>]’ are of course optional, but if used you must specify an <output
field type> property first! Entries here are processed as space delimited pairs of space
separated ‘<setting> <value>’ entries support the following, unless otherwise specified.
* Note * that any required spaces in the setting ‘value’ should be replaced by a URL
encoded ‘%20’ for input processing compatibility:

▪ ‘Width’ sets the width of text field. Though Publishing minimum for GeoJSON is
256. The actual field width is set by the largest data value encountered during
publishing. Setting this value here will Truncate values found that are larger than
what is specified and the first record will receive a Space Padded value to set the
desired width, otherwise the published field width will vary from update to
update. Ex. ‘width 1024’

▪ ‘Case’ sets the output string case of text field. Supported values are ‘Upper’ (all
letters are capitalized), ‘Lower’ (no letters are capitalized), ‘Capital’ (first word in
phrase is capitalized), ‘AllCapital’ (all words in phrase are capitalized), ‘Title’ (all

V1.0.2 Json2GeoJSON.py February 21, 2022

7

words in a phrase are capitalized except minor words. Ex ‘The state of all things’
becomes ‘The State of All Things’), ‘Camel’ (spaces in a phrase are removed and
all words are capitalized. Ex ‘The professional group’ becomes
‘TheProfessionalGroup’), ‘camel’ (spaces in a phrase are removed and all words
but the first are capitalized. Ex ‘I phone’ becomes ‘iPhone’, ‘Camel Case’ becomes
‘camelCase’), and ‘Acronym’ (use first letter from all words with existing case. Ex
‘Department of Justice’ becomes ‘DoJ’, ‘Environmental systems research institute’
becomes ‘Esri’). Default: no case change is made.

▪ ‘Default’ is a value that can be included as a default value if the source <element
name> does not exist, forcing the publishing action to create a field type other
than the default ‘text’ field. * Tip * The ‘value’ entry for this property can also
include the ‘<output field name>’ of any field processed prior to this field (above
it in the list of fields). This field’s value will be used instead of a constant. If a
default is not provided, the <output field type> default will be used. Ex.
‘Default This%20is%20a%20test!’

▪ ‘AllowNulls’ is a Flag setting that does NOT use a ‘value’, it is a standalone field
property! When included, the field value will be saved as ‘null’ if the field content
is the same as the <output field type> Default value, overriding the ‘processing
section’ setting for this field only!

▪ ‘DoNotSave’ is a Flag setting that does NOT use a ‘value’, it is a standalone field
property! When included, the field will NOT be saved to the output. This is handy
for building derived or intermediate fields for processing Element data that will
be used by other fields and you may not want to include them in the output.

o ‘[<optional properties>]’ Element data Extraction can be handled by using the following
optional field property entries. These properties are processed in a linear fashion. Chain
these together on the field definition to develop the field processing needed to ‘extract’
or augment data in the Element’s content. * Tip * The ‘value’ entry for these properties
can also include the ‘<output field name>’ of any field processed prior to this field (above
it in the list of fields). This field’s value will be used instead of a constant.

▪ ‘Offset’ will start extraction evaluation at offset position Left of Element content.
A negative value starts n characters from the right. Used without any other
extraction properties will result in truncating content LEFT of this position!
Default is ‘0’

▪ ‘Length’ will end extraction at length, or number of characters. Used without any
other extraction properties will result in truncating content to the RIGHT of this
length! Default is length of Element content remaining.

▪ ‘Start’ is the beginning search text, starting data extraction at the next character
to the right of finding the ‘start’ text. Used without any other extraction
properties will result in truncating content LEFT of and including the ‘start’ text!
Default is no start search.

▪ ‘End’ is the ending search text to look for, stopping the extraction at the character
to the left of the end text. Used without any other extraction properties will result
in truncating content to the RIGHT of where this ‘end’ text begins! Default is
length of Element content remaining.

▪ ‘Concat’ specifies a value or Field data to Concatenate to the right of this field
content. Use this to merge static or dynamic field data together.

V1.0.2 Json2GeoJSON.py February 21, 2022

8

▪ ‘Add’ specified a numeric value or Field data to add to this field content. Use this
to modify the numeric value of the field data.

▪ ‘Sub’ specified a numeric value or Field data to subtract from this field content.
Use this to modify the numeric value of the field data.

▪ ‘Mult’ specified a numeric value or Field data to multiply this field content by. Use
this to modify the numeric value of the field data. Ex. Use to convert unit value
from one type to another, MPH to Km/h for instance.

▪ ‘Div’ specified a numeric value or Field data to divide this field content by. Use
this to modify the numeric value of the field data.

As an example, consider the following GeoJSON item data taken from USGS Earthquake site. This is an
excerpt taken from the ‘feature’ rootElement list containing many items in the Json data.

Initially, the Highlighted Elements will be used to create fields in the output GeoJSON, each being
added to the output INI file automatically when the field section or list of fields are not defined. The

Geometry ‘point’ Elements in the source data will be used to create the Point GeoJSON Layer.

Here is the initial, or default, INI representation of the above data:

{

 "type": "Feature",

 "properties": {

 "mag": 4.8,

 "place": "72 km E of Hualien City, Taiwan",

 "time": 1636482254486,

 "updated": 1636484113040,

 "tz": null,

 "url": "https://earthquake.usgs.gov/earthquakes/eventpage/us7000fss1",

 "detail": "https://earthquake.usgs.gov/fdsnws/event/1/query?eventid=us7000fss1&format=geojson",

 "felt": null,

 "cdi": null,

 "mmi": null,

 "alert": null,

 "status": "reviewed",

 "tsunami": 0,

 "sig": 354,

 "net": "us",

 "code": "7000fss1",

 "ids": ",us7000fss1,",

 "sources": ",us,",

 "types": ",origin,phase-data,",

 "nst": null,

 "dmin": 0.679,

 "rms": 0.79,

 "gap": 61,

 "magType": "mb",

 "type": "earthquake",

 "title": "M 4.8 - 72 km E of Hualien City, Taiwan"

 },

 "geometry": {

 "type": "Point",

 "coordinates": [122.3123, 23.9958, 27.65]

 },

 "id": "us7000fss1"

}

V1.0.2 Json2GeoJSON.py February 21, 2022

9

Customizations can be performed, whereby the output Field names can be changed, the data types
can be adjusted, the field order can be rearraigned, fields can be added or removed, and ad-hoc fields
can be created by extracting content from existing fields. As an example, examine the sample item
data in our initial example. You’ll find that the ‘time’ and ‘updated’ date fields are set to Epoch
seconds and the Geometry Z value is an absolute Depth in Kilometers. We can refine the INI file to
improve the clarity of these and other fields.

To adjust the Geometry Z values, we can alter the ‘zFactor’ parameter to change the Kilometer depth
to Negative Meters by setting it to ‘-1000’. This will be used to multiply each Z value, turning them
into negative meters. Ex. Z = 27.65, will become -27650

Setting the field types can convert values like dates to be represented as dates, numbers will be
represented as numbers. The ‘updated’ field contains Epoch numbers. Setting this field type to a
‘date’ type will force the value to be processed as a date, which detects the Epoch value, returning it
as a date/time string. Ex. Epoch ‘time’ value of ‘1636482254486’ will become ‘2021-11-09 18:24:14’
(without milliseconds)

[properties]

lastPublicationDate = 2021/11/10 06:02:23

rootElement = features

flattenData = True

flattenNames = True

trimOuterSpaces = True

allowNulls = True

xField =

yField =

zField =

zFactor = 1.0

zOffset = 0.0

[EarthquakeQuery.geojson]

id = id

properties_alert = alert

properties_cdi = cdi

properties_code = code

properties_detail = detail

properties_dmin = dmin

properties_felt = felt

properties_gap = gap

properties_ids = ids

properties_mag = mag

properties_magType = magType

properties_mmi = mmi

properties_net = net

properties_nst = nst

properties_place = place

properties_rms = rms

properties_sig = sig

properties_sources = sources

properties_status = status

properties_time = time

properties_title = title

properties_tsunami = tsunami

properties_type = type2

properties_types = types

properties_tz = tz

properties_updated = updated

properties_url = url

type = type text DoNotSave

V1.0.2 Json2GeoJSON.py February 21, 2022

10

Here’s a look at a configured INI file where we have included the specific fields types and exclude
other fields that aren’t adding value.

You can see the yellow highlighted field types we added and the zFactor setting we changed. The light
blue highlighted fields are set not to be saved. The ‘type’ Element is automatically set not to save
because it is the source GeoJSON ‘Feature’ type designator, not a true field in the data! The ‘tz’ or
time zone field does not provide value, as it is not being populated.

The resulting GeoJSON data for the above example shows how this alters the output:

[properties]

lastPublicationDate = 2021/11/10 06:02:23

rootElement = features

flattenData = True

flattenNames = True

trimOuterSpaces = True

allowNulls = True

xField =

yField =

zField =

zFactor = -1000.0

zOffset = 0.0

[EarthquakeQuery.geojson]

id = id

properties_alert = alert

properties_cdi = cdi integer

properties_code = code

properties_detail = detail

properties_dmin = dmin float

properties_felt = felt integer

properties_gap = gap integer

properties_ids = ids

properties_mag = mag float

properties_magType = magType

properties_mmi = mmi float

properties_net = net

properties_nst = nst

properties_place = place

properties_rms = rms float

properties_sig = sig integer

properties_sources = sources

properties_status = status

properties_time = time date

properties_title = title

properties_tsunami = tsunami integer

properties_type = type

properties_types = types

properties_tz = tz text DoNotSave

properties_updated = updated date

properties_url = url

type = type text DoNotSave

V1.0.2 Json2GeoJSON.py February 21, 2022

11

The next example is a Json dataset that comes from a General Transit Feed Specification or GTFS data
source. This data is formatted as an array of dictionaries, each entry in the array is a transit record.

For this data, there is no rootElement, as the file contains a single array of entries. This root entry list
becomes the source “list” of entries to process. The INI file for this data has been setup to leverage
the “lat” field as the ‘yField’ and “lng” field as the ‘xField’ since there is no Geometry value. Like our
last example, we have provided field types and converted the date field from an Epoch value to a
date. We also clarified some of the field names to make this data more understandable. Here’s a look
at the configured INI file for this data:

{

 "type": "Feature",

 "properties": {

 "id": "us7000fss1",

 "alert": "",

 "cdi": 0,

 "code": "7000fss1",

 "detail": "https://earthquake.usgs.gov/fdsnws/event/1/query?eventid=us7000fss1&format=geojson",

 "dmin": 0.679,

 "felt": 0,

 "gap": 61,

 "ids": ",us7000fss1,",

 "mag": 4.8,

 "magType": "m",

 "mmi": 0.0,

 "net": "us",

 "nst": "",

 "place": "72 km E of Hualien City, Taiwan",

 "rms": 0.79,

 "sig": 354,

 "sources": ",us,",

 "status": "reviewed",

 "time": "2021-11-09 18:24:14",

 "title": "M 4.8 - 72 km E of Hualien City, Taiwan",

 "tsunami": 0,

 "type": "earthquake",

 "types": ",origin,phase-data,",

 "updated": "2021-11-09 18:55:13",

 "url": "https://earthquake.usgs.gov/earthquakes/eventpage/us7000fss1",

 },

 "geometry": {

 "type": "Point",

 "coordinates": [122.3123, 23.9958, -27650.0]

 }

}

[

 {

 "ty": "gtfs",

 "l": {

 "pid": 661,

 "n": "Izmit",

 "t": "Izmit, \u0130zmit/Kocaeli, Turkey",

 "lat": 40.765441,

 "lng": 29.940809,

 "id": 662

 },

 "u": {

 "d": "http://kocaeli.bel.tr/webfiles/userfiles/files/birimler/bilgi-islem-dairesi-

baskanligi/kocaeli-gtfs.zip"

 },

 "t": "Kocaeli GTFS",

 "id": "kocaeli-buyuksehir-belediyesi/964",

 "latest": {

 "ts": 1540898966

 }

 }

]

https://en.wikipedia.org/wiki/General_Transit_Feed_Specification

V1.0.2 Json2GeoJSON.py February 21, 2022

12

The output GeoJSON data is ready for upload.

[properties]

lastPublicationDate =

rootElement =

flattenData = True

flattenNames = False

trimOuterSpaces = True

allowNulls = True

xField = lng

yField = lat

zField =

zFactor = 1.0

zOffset = 0.0

[AllFeeds.jsonlist]

id = id

l_id = location_id integer

l_lat = lat float DoNotSave

l_lng = lng float DoNotSave

l_n = location_name

l_pid = location_pid integer

l_t = location_long_name

latest_ts = latest_timestamp date

t = title

ty = data_type

u_d = u_d

u_i = u_i

 {

 "type": "Feature",

 "properties": {

 "id": "kocaeli-buyuksehir-belediyesi/964",

 "location_id": 662,

 "location_name": "Izmit",

 "location_pid": 661,

 "location_long_name": "Izmit, \u0130zmit/Kocaeli, Turkey",

 "latest_timestamp": "2018-10-30 11:29:26",

 "title": "Kocaeli GTFS",

 "data_type": "gtfs",

 "u_d": "http://kocaeli.bel.tr/webfiles/userfiles/files/birimler/bilgi-islem-dairesi-

baskanligi/kocaeli-gtfs.zip",

 "u_i": ""

 },

 "geometry": {

 "type": "Point",

 "coordinates": [29.940809, 40.765441]

 }

 }

V1.0.2 Json2GeoJSON.py February 21, 2022

13

Command-Line Usage / Execution

To execute script, open a Python Command Line Window and type:

‘Python Converters\Json2GeoJSON.py <sourceFilename> [<checkPublication> [<verbose>]]’

Command-Line Input Parameters

• Available Input Parameters

 <sourceFilename>: (required) String Path and or Filename of source Json file to process.

 <checkPublication>: (optional) Boolean True or False telling script to compare file’s Publication Date
to the most recently processed Publication Date. If not newer, return an empty
string that tells the calling routine (OverwriteFS script) that there is no change
to the data.

 Default is True

 <verbose>: (optional) Boolean True or False telling script to display progress and details.
Setting this to False will turn off progress reporting altogether!

 Default is True

V1.0.2 Json2GeoJSON.py February 21, 2022

14

Command-Line Examples

• Execution with just the source Filename. Script shows input file path, name, and detected type.
It also shows the evaluated Publication Date/Time format and value, reporting there has been no
change to the data since last run.

• Example run that overrides the ‘checkPublication’ value, set to False and ignoring the PubDate.
This forces the routine to process the data even if there has been no change. The additional detail
reports the number of rows read in and written out.

• This script will display a column count for any field defined where the Element specified is NOT
found in the source data, typical for ad-hoc fields added by the user. Here, you can see a ‘test’ field
that was added, pointing to a test Element that does not exist. It also displays a row count for the
number of rows in the source data that have a specific Element that is not used for output. This script
will also report any field that has trouble being processed.

V1.0.2 Json2GeoJSON.py February 21, 2022

15

Guidance, Limitations, and Known Issues

• Guidance
o Always a good idea to start a new Service by downloading your data file and running this

script manually. This allows you to prototype the design without adding Service
maintenance into the mix until you have a design you are happy with.

o When you complete your design changes and applied your updates, make a copy of the
INI file for your records. Losing this file would force you to start your design work over
gain from scratch!

o Once the ‘field section’ of the INI file contains entries, the script will NOT add new fields,
as not to corrupt the existing schema. Yet they can be added manually!

• Limitations
o Detailed and precise schema control is not available in this release. Future releases will

hopefully provide this capability. May need to redesign the underlying calls to be able to
control the schema passed to the Portal REST endpoints.

• Known Issues
o When running parent OverwriteFS script through an online Notebook, include the

‘outPath’ option, specifying a folder within the ‘/arcgis/home’ directory. If not, the default
temp location could drop your download and INI files during cleanup, making the service
schema inconsistent. Same is true when storing files outside of the ‘home’ folder, these
are subject to removal by the Notebook Kernel. The temp location may also be difficult to
access, making alterations to the INI file near impossible!

V1.0.2 Json2GeoJSON.py February 21, 2022

16

Release History

• November 2021, v1.0.0: Initial public release.

• December 2021, v1.0.1: Patch ‘Null’ Z value handling.

• February 2022, v1.0.2: Patch to correct output Json schema.

