
v2.1.2 OverwriteFS.py February 21, 2022

1

Table of Contents

Overview .. 2

Requirements ... 3

Capabilities and Workflow options.. 4

Command-Line Usage / Execution... 5

Command-Line Response.. 5

Command-Line Validation and Input Error Messages .. 5

Command-Line Input Parameters ... 9

Command-Line Examples .. 13

• Execution with optional help Switch ‘-h’ specified .. 13

• Identifying Response Details reported during execution... 14

• Touching a Service ... 15

• Overwriting a Service, renewing its Data .. 16

• Invoking the ‘-Convert’ option.. 17

• Repairing a lost Service to File Item relationship .. 20

• Adding Multi-Service Relationships to a View ... 21

• Relationship Direction .. 23

• Swapping Layers in a View ... 24

Python Code Sample ... 26

Exploring OverwriteFS Functions .. 27

• Function: updateRelationships .. 27

• Function: getFeatureServiceTarget.. 28

• Function: swapFeatureViewLayers .. 29

• Function: overwriteFeatureService .. 30

Online Notebook Code Sample ... 31

Guidance, Limitations, and Known Issues .. 32

Release History ... 34

v2.1.2 OverwriteFS.py February 21, 2022

2

Overview

The OverwriteFS Python script is designed to run as a standalone routine OR it can be ingested by
Python scripts or Python Notebooks for use in your own custom tools and workflows.

Once a Hosted Feature Service has been created in ArcGIS Online or on your Enterprise Portal, you can
leverage this script to regularly overwrite (re-publish) the service using your updated Service File
(originally used to Publish the service). If your source data resides on a public internet location, you
can use this script to download the updated file data and overwrite your service. Restrictions may
apply if a Tile, Vector Tile, OGC, or WFS service has been added to the Feature Service or View.

Launch as a stand-alone process from the Command Prompt or create a Task in the Windows Task
Scheduler to execute at specific times.

Import into your own Python script or Python Notebook as a Module and integrate the overwrite
functions in your workflows.

v2.1.2 OverwriteFS.py February 21, 2022

3

Requirements

1. Python 3.x or Python Notebook
2. ArcGIS Python API 1.5.1+
3. Pre-existing ArcGIS Python API ‘GIS’ module connection ‘Profile’, see Python API Documentation

for options and examples.
a. If an ArcGIS Pro connection is needed, ArcGIS Pro and Arcpy will also be required.
4. Pre-existing File-Based Hosted Feature Service with related File Item used during publishing.
5. Write access to user’s Temp folder, to store intermediate item configuration files, as a backup,

during Overwrite process.

https://developers.arcgis.com/python/api-reference/arcgis.gis.toc.html#gis

v2.1.2 OverwriteFS.py February 21, 2022

4

Capabilities and Workflow options

• Touch a Service and/or View Item’s “Last Updated” property, visible on the Item’s detail page:
o Updating the Service Item without modifying any properties can be used as proof that

your update process has run, even if it hasn’t changed any data.

• Overwrite a Service using updated local data or Internet resource:
o Overwriting or re-Publishing is one way to replace the entire data set contained in a

Service, renewing its contents.
o Requires the Service to have a related File Item (created during initial Publishing).
o Will likely disrupt user access during the overwrite process. The larger the data set is, the

longer the Service will be inaccessible.
o Overwrite action will also update the Data visible to any View created from the Service.

• Minimize user access disruption during overwrite by using “Layer Swap” capability:
o Leverage ‘-SwapLayers’ Action Switch to initiate with/without Overwrite.
o Leverage ‘-GetTarget’ Action Switch to report Target Service for Layer Swap.
o Manages 2 identical Services, ‘A’ and ‘B’, using one Service View.
o Update Service ‘B’ while users access Service ‘A’, referenced by View.
o Swap Layers in View from Service ‘A’ by pointing to Service ‘B’.
o Allowing overwrite of Service ‘A’.
o Repeat…
o Include ‘-UpdateTarget’ Option Switch to manually invoke “Layer Swap” after QA/QC!

• Enhance functionality by invoking a Conversion tool Post-Download and Pre-Service-Update:
o Ex: Includes an ‘Xml2GeoJSON’ conversion Module that takes an XML file and converts it

to GeoJSON for upload to ArcGIS Online.
o Ex: Includes a ‘Json2GeoJSON’ conversion Module that takes a Json file and converts it to

GeoJSON for upload to ArcGIS Online.
o Leverage this ‘-Convert’ Option Switch to customize or tailor the output as needed.

• Manage Service-to-View Relationships, required by “Layer Swap” capability:
o Leverage ‘-AddRelated’, ‘-RemoveRelated’, or ‘-ListRelated’ Action Switches to add,

remove, or display Service relationships to a View.

• Restore lost File Item Relationship to existing service:
o A File Item is required when Overwriting a service. A File Item is the associated Item that

was initially uploaded/created during the Service Publication process. This Item contains
the schema and data used to initially create and hydrate the Service. If this Item is
removed post-publishing, you will lose the ability to Overwrite the Service Item.

o If a local copy of the uploaded file still exists, you can recreate the missing or deleted File
Item by uploading the file as a new Item, and then reestablish the relationship it once had
to the Service, allowing you to overwrite the Service once again.

v2.1.2 OverwriteFS.py February 21, 2022

5

Command-Line Usage / Execution

To execute script, open a Python Command Line Window and type:

‘Python <path>\OverwriteFS.py <profile> <Service Item Id> <Service Title>’

Or for usage help, type:

‘Python <path>\OverwriteFS.py -h’

Command-Line Response

When returning from execution, the script will set the Exit Code (or Errorlevel on Windows) to report
the outcome of the run.

• Exit code 1 = Failure
• Exit code 0 = Success, update was made

• Exit code -1 = No changes were made

Command-Line Validation and Input Error Messages

• Alphabetical list of common Input and Validation Error responses, all resulting in an Error exit
outcome of ‘1’ returned to the command-line.

Data Conversion Failed, Error: '<e>': The ‘-Convert’ option failed to convert the downloaded
data because of an error specified by <e>.

Feature Service Item is a 'View', cannot Overwrite: The specified Service Item is a Hosted
Feature View, which cannot be Overwritten. Check that the correct Item is being used, verify using

ArcGIS Online if needed.

Feature Service Item is NOT a 'View': The specified View Item is NOT a Hosted Feature View.
The script is unable select a Target Service to Overwrite. Check that the correct Item Id is being used,
verify using ArcGIS Online if needed.

Feature Service Item Title does NOT match the specified Title: ‘<xyz>’, Found: ‘<abc>’: The
specified Title does not match the Title of the specified Item Id. Check for misspellings, you may also
need to surround the title with Double-Quotes if it includes spaces. The command prompt uses spaces
to identify each input parameter, quoting them will treat the phrase as an input parameter.

Feature Service View requires 2 Related Feature Services or 2 Related Feature Views, found:
{n}: The specified View Item has more or less than 2 Related Hosted Services or Views. Swap Layers
action requires 2 and only 2 related Items. Check that the correct Item Id is being used, verify using
ArcGIS Online if needed.

Insufficient Input Parameters: The minimum number of input parameters were not provided,
resulting in the script returning this message along with Usage details.

v2.1.2 OverwriteFS.py February 21, 2022

6

Item is NOT a Feature Service 'View', cannot Swap Layers: The specified Service Item is NOT a
Hosted Feature View. You can only Swap Layers of a View, no other Item type supports this action!

Check that the correct Item Id is being used, verify using ArcGIS Online if needed.

Item Type is NOT a 'Feature Service': The specified Service Item is NOT a Hosted Feature Service
or View. The script cannot Overwrite or Swap Layers on any other Item types. Check that the correct
Item is being used, verify using ArcGIS Online if needed.

Loading Converter '<xyz>' Failed, Error: ' Failed to evaluate Parameter '<a>', Error: '<e>'': The
specified “Converter” Module named <xyz> could not evaluate parameter <a> because of an error
reported by <e>. If a String or File specifier is provided, you may need to include Quotes around the
String. Review the Module documentation for details and requirements.

Loading Converter '<xyz>' Failed, Error: ' Failed to import module '<xyz>', Error: ' Function
'convert' has NO parameters, minimum of 1 is required’': The ‘convert’ function in the specified
“Converter” Module named <xyz> does not include parameters. At least one is required to pass along
the download path and filename for processing. Review the Module name specified and check that it
conforms to the requirements.

Loading Converter '<xyz>' Failed, Error: ' Failed to import module '<xyz>', Error: ' Module is
missing 'convert' function'': The specified “Converter” Module named <xyz> does not contain a
Function called ‘convert’. Review the Module name specified and check that it conforms to the

requirements.

Loading Converter '<xyz>' Failed, Error: ' No Parameters required, <n> specified': The ‘convert’
function in the specified “Converter” Module named <xyz> only has one parameter (the download File
specifier), no additional parameters are supported, yet <n> were included in the convert request.
Review the Module name specified and check that it conforms to the requirements.

Loading Converter '<xyz>' Failed, Error: ' Too many Parameters specified, <n>, only need
values for ('<arg>, <…>')': The ‘convert’ function in the specified “Converter” Module named <xyz>
has multiple parameters, listed by <arg>, but more parameters were specified. A total of <n> were

specified. Review the Module name specified and check that it conforms to the requirements.

Login failed, please verify Profile: The provided Profile could not be used to log into ArcGIS

Online or Enterprise Portal. Check the Profile using the Python API to resolve the issue and try again.

Missing Associated Service Data Item or datafile Item 'name': The specified Service Item is
missing its associated File Item, or, it is missing the ‘Service2Data’ relationship to the File Item. Check
that the correct Item Id is being used, verify using ArcGIS Online if needed. If the File is located, check
for missing relationship by using the ‘-ListRelated’ Action Switch for specified Service Item. Ideally, this
item should ‘Rely on Data Item’ you found! If not, the ‘-AddRelated’ Action Switch can be used to
restore the lost relationship.

Missing Update File or Invalid Switch: ‘<xyz>’: One or more of the additional parameters were

incorrect or not recognized.

v2.1.2 OverwriteFS.py February 21, 2022

7

Mutually exclusive parameters are set, cannot Preserve and Ignore Service/View Properties:
The ‘-NoProps’ and ‘-PersistProps’ parameters were both specified (enabled). The script cannot Set

and Not Set the properties on the specified Service Item at the same time.

No Data Service Target available: No Hosted Feature Service Items could be Targeted for the
Overwrite action on the specified View Item. Overwrite action cannot be performed. Check that the
correct Item Id is being used, verify using ArcGIS Online if needed.

Overwrite on Service is NOT allowed, a dependent View or Service has Change Tracking
Enabled: The specified Service Item cannot be Overwritten because a dependent Service has ‘Change
Tracking’ enabled. Change Tracking is a dependent condition when a ‘Tile’ Service (not a Vector Tile
Service) is created from the Hosted Service or View. Overwriting the Service will disrupt or break the

Service! Check that the correct Item Id is being used, verify using ArcGIS Online if needed.

Overwriting on Service is NOT allowed, a dependent OGC or WFS Service exists: The specified
Service Item includes a dependent Open Geospatial Consortium (OGC) or Web Feature Service (WFS)
Service Item created from it. You cannot Overwrite the Service if one of these dependencies exist, it
will break the OGC or WFS Service!

Password missing for user ‘<abc>’ in Profile ‘<xyz>’: The stored input Profile does not contain a
password. Check the Profile using the Python API to resolve the issue and try again.

Related View does NOT contain a Data Source: The specified View Item’s Related View does
NOT contain a Parent Hosted Feature Service. The script is unable select a Target Service to Overwrite.
Check that the correct Item Id is being used, verify using ArcGIS Online if needed. If the Related Hosted
Feature View does not in fact have a Parent Service, the ‘-AddRelated’ Action Switch can be used to
reconnect to the proper Service Item. * Use extreme Caution!

Source file too large: The input source specified is larger than 2,147,483,647 bytes and cannot
be used to update the Service or File Item.

Swapping Layers is NOT allowed, a dependent OGC or WFS Service exists: The specified View
Item includes a dependent Open Geospatial Consortium (OGC) or Web Feature Service (WFS) Service
Item created from it. You cannot Swap Layers of the View if one of these dependencies exist, it will
break the OGC or WFS Service!

Target Feature Service is missing a file Data Source: The Targeted Hosted Feature Service
selected by the Swap Layers with Overwrite action is missing an associated File Item. The Overwrite
action cannot be performed. Check that the correct Item Id is being used, verify using ArcGIS Online if
needed.

Unable to Locate specified Item: ‘<xyz>’: The specified Service Item cannot be found using the
Item Id. Check that the correct Item Id is being used, verify using ArcGIS Online if needed.

Unable to locate Update File or Folder ‘<xyz>’: The update File or Path provided cannot be
found. The specified file may not exist or is incorrectly specified, or the script may not have access to
the resource.

v2.1.2 OverwriteFS.py February 21, 2022

8

Update Filename '{abc}' does NOT Exist: The specified Service Item update Filename cannot be
found. Check that the correct path and Filename is being used.

Update Filename '{abc}' does NOT match Original Filename used to Publish Service: '{xyz}': The
specified Service File Item Filename, ‘{abc}’, does not match the Filename, ‘{xyz}’, used to Publish the

Original Service Item.

Update Filename '{abc}' is NOT a File: The specified Service Item update Filename is not file.
Check that the correct path and Filename is being used.

Update Filename '{abc}', Originally Published with Service, CANNOT be found in Folder: '{xyz}':
The specified Service File Item’s Filename, ‘{abc}’, cannot be found in the specified folder, ‘{xyz}’.
Verify that the file location has been specified correctly.

v2.1.2 OverwriteFS.py February 21, 2022

9

Command-Line Input Parameters

• Available Input Parameters

 -h: (optional) Action Switch that triggers 'usage' display then exits.

 <profile>: (required) A pre-generated Python API connection profile name (with stored
connection details) which has administrative access to the Service Item you wish
to update. You can also specify the string text ‘pro’, telling the script to use the
active ArcGIS Pro connection setting for the user running the script.

 <item>: (required) Service Item Id of the Service you wish to Update or interact with.

 <title>: (required) Service Item ‘title’, used to verify that the item Id is the correct item
you want to update. * Please Note * You will need to wrap the title text in
Double-Quotes if spaces are included in item title, allowing DOS to accept a title

phrase as a single input parameter. Ex. “MODIS C6 Global 24h”

 <filename>: (optional) file path and/or name of file to upload, or URL source to online data file.
If 'path' only, script will search path for original filename used to publish Service. If
file name specified, it must match original filename used to publish Service unless
‘-Convert’ is used. It will be passed to conversion routine as is and the output will
be re-named to match original filename used to publish Service prior to upload.

 Default: Empty string, only touch Item and/or Views to refresh last update date.

 <url>: See ‘<filename>’ for general behavior. The download file will match the filename
used to originally create the Service. Download and processing of data will depend
on age of <url> content. If the last Service update is newer than this content, the
update will be canceled. If the <url> site does not support content age, then the
age of the last download will be compared to the Service. If ‘-Convert’ is used, the
result of the conversion will be compared to the last file conversion using a CRC
algorithm. Leverage ‘-IgnoreAge’ to override these age comparisons!

 -OutPath: (optional) Option Switch setting output file Path used to store ‘<url>‘ file
download and Service property backup files during run.

 Default: User's Temporary folder.

 <output folder>: (optional, but required when ‘-OutPath’ option)

 -NoTimeSeries: (optional) Option Switch instructing function not to touch Time Extent of Time
Series enabled Layers in Service and related Views.

 Default: Touch Layer Time details on Item and related Views, reflecting new data.

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

v2.1.2 OverwriteFS.py February 21, 2022

10

 -NoIndexes: (optional) Option Switch instructing function not to recreate missing Layer field
Indexes on Service.

 Default: Recreate indexes if they are missing after an Overwrite action.

 -NoTouch: (optional) Option Switch instructing function not to update the 'lastUpdated' item
property for the Service or related Views unless an update has been made.

 Default: Update, or “touch”, the 'lastUpdate' property on the Service item and
Views, even when an update has not been made. Signifies that the process has

been run.

 -NoWait: (optional) Option Switch instructing function not to wait for re-application of
properties like Layer Optimization to complete before continuing the Overwrite or
Layer Swap action. When enabled, function will report condition and supply a URL
that can be used for manual status review.

 Default: Function will wait for properties like Layer Optimization to be re-applied
before proceeding to next processing 'step' in Overwrite or Layer Swap workflow.

 -NoProps: (optional) Option Switch instructing function NOT to Re-Apply Service or View
properties following a successful update. This Defaults Service or View back to its
Published state, mimicking the operation of Version 1.4.4 and reducing workload!

 * Warning * Any Post-Publishing changes WILL BE LOST!

 * Caution * If set to True, '-PersistProps' setting CANNOT be set to True!

 Default: Re-Apply properties and do not persist Backup file beyond successful
update.

 -PersistProps: (optional) Option Switch instructing function to retain Service or View property
Backup File after a successful Overwrite and property restoration. Will be used in
subsequent Overwrite actions while option persists.

 * Caution * If set to True, '-NoProps' setting CANNOT be set to True!

 Default: Do not persist Backup file beyond successful update.

 -DryRun: (optional) Option Switch instructing function to step through process WITHOUT
updating the Service.

 Default: Update or Touch the Service and Item.

 -IgnoreAge: (optional) Option Switch instructing function to ignore ‘<url>’ download age
checks, and update Service.

 Default: Cancel Service update if age of ‘<url>’ data is not newer than last Service
update.

 -SwapLayers: (optional) Action Switch instructing function to Swap Layers in View, point all
Layers to Target or newly Overwritten Feature Service. Used by A/B Feature
Service enabled View, whereby the View is Related to Two Feature Services,
allowing the View's Layers to be swapped out to point to the matching Layers of

v2.1.2 OverwriteFS.py February 21, 2022

11

the newly updated Feature Service. See ‘-UpdateTarget’ Action Switch for an
alternate manual QA/QC workflow.

 Default: Overwrite action when ‘<filename>’ or ‘<url>’ specified and no other
Action Switches included.

 -GetTarget: (optional) Action Switch instructing function to report the selected Feature Service
Item Id, Title, and File Item upload Filename that should be used for the next
update target. Leveraged by A/B View enabled Services to select inactive Feature
Service that should be overwritten next.

 Default: Overwrite action when ‘<filename>’ specified and no other action
switches included.

 -UpdateTarget: (optional) Action Switch instructing function to invoke Swap Layers logic to update
target Service and Item but stop before Swapping the Layers in the View. This
allows for a Manual QA/QC process prior to swapping into production.

 Default: Overwrite action when ‘<filename>’ specified and no other action
switches included.

 -ListRelated: (optional) Action Switch instructing function to List all Items related to ‘<item>’
View or Service.

 Default: Overwrite action when ‘<filename>’ specified and no other action
switches included.

 -AddRelated: (optional) Action Switch instructing function to Add specified Service Item(s) to
View ‘<item>’, limit two Item Ids as Related Services. Related Services are
required for '-SwapLayers' action to switch Layers of View so they point to Layers
referenced by Related 'target' Feature Service.

 Default: If No Item IDs specified, action will be to '-ListRelated' relationships for
‘<item>'.

-RemoveRelated: (optional) Action Switch instructing function to Remove specified A/B Service
Items from View ‘<item>’. Related Feature Services are required for '-SwapLayers'
to target and switch Layers of ‘<item>’ View so they point to same Layers
referenced by Related 'target' Feature Service.

 Default: If No Items specified, action will be to '-ListRelated' relationships for
‘<item>'.

 <Item A id> and
 <Item B id>: (optional, but at least one is required when using ‘-AddRelated’ or ‘-

RemoveRelated’ Action Switch). The unique Item Identifier for the Content Item
managing the Service. Ex: Id for 'Active Hurricanes, Cyclones, and Typhoons' is:
248e7b5827a34b248647afb012c58787

 -Convert: (optional) Action Switch instructing function to import specified Python Module
and use it to transform the source data before Overwriting the Hosted Feature

v2.1.2 OverwriteFS.py February 21, 2022

12

Service. Download file is passed to Function as first parameter. When available, a
True or False Boolean value, based on ‘detail’, is passed to ‘verbose’ parameter.

 * Note * Only available during a Overwrite action.

 Default: No conversion of the input data will take place.

 <module>: (optional but required when using ‘-Convert’ Action Switch) A Case-Sensitive
Python Module (or script) name to leverage for data conversion prior to updating
Service. Supports Python 'Dot' notation for Folder/Module/Class path access to
'convert' Function.

 * Note * Path is RELATIVE to 'Converters' folder in OverwriteFS.py script location!

 Ex: [<folder>.]<module>[.<class>] where path and class are optional

 <call param>: (optional) Additional call parameters to pass to '-Convert' <module> function.
Only need to include parameters that follow the download file string specifier in
'convert' Function. Does NOT support Keyword Arguments, positional ONLY!

-AllowPWprompt: (optional) Option Switch instructing function to Allow use of an undefined user
account password in the Profile, allowing Python API to prompt for user entry.

 * Note * Not recommended for use during Unattended execution!

 Default: If Profile Password is not defined, function will report the condition and
Exit.

 -LessDetail: (optional) Option Switch instructing function to only Display major steps and error
responses.

 Default: Display step by step processing detail, or ‘-MoreDetail’ if set.

 -MoreDetail: (optional) Option Switch instructing function to Display maximum Diagnostic
detail and error responses.

 Default: Display step by step processing detail, or ‘-LessDetail’ if set.

 -Password: (optional) Option Parameter instructing function to overwrite the stored Profile
password with this plain text password.

 Default: Use password set in Profile.

 <password>: (optional, but required when using -Password option)

v2.1.2 OverwriteFS.py February 21, 2022

13

Command-Line Examples

• Execution with optional help Switch ‘-h’ specified

v2.1.2 OverwriteFS.py February 21, 2022

14

• Identifying Response Details reported during execution

When executing script, identify specific details reported during the run. See following figure:

Exhibit – ‘A’: Reports the filename and version of the script that was launched.

Exhibit – ‘B’: Reports the Python API Profile specified at launch time.

Exhibit – ‘C’: Reports the Item Id of the Item the script was instructed to act on.

Exhibit – ‘D’: Reports the Item Title provided, as verification that the script will act on the desired Item.

Exhibit – ‘E’: Reports the update file provided. In this case, a file was not provided, so the script
reports that it will only “touch” the item. If a filename, folder name, or URL were provided, the script
would have reported the appropriate details for the record.

Exhibit – ‘F’: Reports any Option Switches that were provided.

Exhibit – ‘G’: Reports the progress of the script during importation of the Python API.

Exhibit – ‘H’: Reports the progress of the script using the Python API to connect to the Enterprise or
Online ArcGIS Portal.

Exhibit – ‘I’: Reports the progress of the desired action, Item “touch” in this case.

Exhibit – ‘J’: Reports the Elapsed processing time for the run in <hours>:<minutes>:<seconds>

v2.1.2 OverwriteFS.py February 21, 2022

15

• Touching a Service

Without providing a file name or URL path to update from, the script will “touch” the Service, Service
Item, and related Views. No data changes will be made, but this action reflects that the update
process has run, updating the ‘lastUpdateDate’ property for all Items.

v2.1.2 OverwriteFS.py February 21, 2022

16

• Overwriting a Service, renewing its Data

Overwriting an existing Service is the act of Re-Publishing from the updated data source content. This
action will recreate the Service and Service Item as if it were newly published, reverting all Post-
Publishing property changes back to their original state. Prior to performing the Overwrite, the script
will backup existing properties and try to restore them following a successful Overwrite action. In the

event the Overwrite action or Property restoration is unsuccessful, the Backup file will be retained.

The following is an example update of the MODIS past 24h Active Fire Data Service with current CSV
formatted data maintained by NASA.

v2.1.2 OverwriteFS.py February 21, 2022

17

• Invoking the ‘-Convert’ option

In some cases, you may need or want to alter, cleanup, or augment the data you are accessing from
the source prior to updating your Service. To help with this, the OverwriteFS script includes a growing
list of ‘-Convert’ options that allow you to specify a custom Python script that can process the
incoming data file and return an updated/altered data file.

The only requirement for this custom script is that it includes a Function called ‘convert’, and this
Function accepts a text string parameter that will contain the file location and name of the source data
file that was downloaded or specified for updating the Service. The convert Function is only required
to return a text string containing the new or updated file path and name OR False/None, indicating
that there is no Service update required (because the source data has not changed). You can include
optional Python parameters as needed. The OverwriteFS script will check for a ‘verbose’ parameter,
which will be populated with the Less/More Details (verbosity) Boolean flag, allowing user to include
or exclude displaying feedback from the script as desired. It also checks for a ‘checkPublication’
parameter, which will be populated with the ‘-IgnoreAge’ option switch, allowing user to enable or
disable checking for an update based on the Publication date/time contained in the file content.

As an example of this workflow, the install package includes a conversion scripts like ‘Xml2GeoJSON’
and ‘Json2GeoJSON’. These scripts read an XML (not currently supported by Online or Portal) or Json
file to create a GeoJson file based on the Tags and attributes found within. The output can then be
used to update your Service. See Converter script documentation for more details and examples!

* Tip * Download the source data manually first and then pass it into your custom script. The output
file can then be used to tailor the processing and initially create your Service!

* Tip * The Conversion scripts will generate a source-filename specific INI file alongside the source file.
This INI file contains field order, naming, and other field specific details that can help customize,

configure, or control the output. See Converter script documentation for more details!

The following are example conversion runs read NOAA’s Incident RSS NEWS channel to update a
Hosted Feature Service with current Geo Spatial Incidents. Notice the ‘Convert’ option and output ‘ -

Conversion:’ dialog detail between the ‘Download’ and ‘Performing Overwrite’ steps.

The Xml2GeoJSON converter script accepts additional True or False parameters that instruct the
routine to compare or ignore the Data Publication date and verbosity of the output. Setting the
‘checkPublication’ property to ‘False’ would allow the routine to run without comparing the
publication date, otherwise canceling the conversion if no source data changes were made. This can
also be controlled by using the ‘-IgnoreAge’ Option Switch. The output of the first run below includes
setting the ‘-IgnoreAge’ Option Switch to control both the OverwriteFS and the Xml2GeoJSON actions
related to Publication Age.

The second run compares the publication date and determines that the publication date has not
changed since the last run, so it returns False, or no conversion file. This tells the OverwriteFS script
that there is no need to perform the overwrite action because the data has not changed.

v2.1.2 OverwriteFS.py February 21, 2022

18

Output from ‘Convert Xml2GeoJSON’ Run #1

v2.1.2 OverwriteFS.py February 21, 2022

19

Output from ‘Convert Xml2GeoJSON’ Run #2

* Note * See the Xml2GeoJSON documentation for additional details, concerns, and options when
using this script!

v2.1.2 OverwriteFS.py February 21, 2022

20

• Repairing a lost Service to File Item relationship

Content Items in Online or Portals often relate to one another, supporting stored relationships. For
example, Hosted Feature Services can have related Views that offer a selective rendering or
obfuscation of the data, fields, or service extent. The View Item is considered a Child to the Service
Parent.

Another relationship is formed when data is Published with the intent of creating a Service. The
Publish action creates a File Data Item that stores a copy of the Service data PRIOR to creating the
Service. This ‘File’ Item can contain GeoJSON, CSV, Excel, or SD (Service Definition) files. Once a File
Item has been uploaded, you can elect to publish a Service from this Item after upload or during the
Publish action. This Publishing action creates a relationship between the File Item and Hosted Service
Item. The Service is a Child to the File Item in this case. Overwriting a Service to update the data or
schema REQUIRES that this File Item to Feature Service Item relationship exists. If for some reason the
File Item for a Service is removed or deleted, you will not be able to Overwrite the Service!

To repair this relationship, the OverwriteFS script can relate a Service Item back to a File Item,
restoring the ability to Overwrite the Service.

Restoration Steps:

1) Confirm that the appropriate File Item does not already exist, upload a copy of the file item using
the Online or Portal User Interface if not. DO NOT create a Service item during the upload! You
will not be able to relate this File Item to the existing Service if you create a new Service. A File
Item can only relate to one Service at a time. When specifying the Title of the File Item, match this
to the Service Item Title. Otherwise the next Service Overwrite action will alter the Service Item
Title to match the File Item Title.

2) Open a Python Command prompt.
3) Launch Python and include the OverwriteFS script, specifying the Profile that owns the Service

item, the Service Item Id, Service Title, ‘-AddRelated’ (Action Switch to add a relationship),
followed by the Item Id of the File Item that should be related to the Service. You always want to
update the Child Item with its related Parent(s). The Service is a Child to the File Item, so we want
to alter the Service Item so it will relate back to the newly uploaded Parent File Item! See screen
shot below that relates the MODIS Service Item to a new File Item after the original File Item was
accidently deleted.

v2.1.2 OverwriteFS.py February 21, 2022

21

• Adding Multi-Service Relationships to a View

In some workflows, having more than one Parent Item related to a Child may be required. The Swap
Layers workflow for instance is one that requires a Child View to have two related Hosted Feature
Service Parents, so that the OverwriteFS script will know which Services can participate in the Swap.

To accomplish this, we will leverage the ‘-AddRelated’ and ‘-ListRelated’ Action Switches. Then we will
verify the relationship configuration by using the ‘-GetTarget’ Action Switch to see what Service Item
will be targeted by the Swap Layers process later on.

Consider first that have a Hosted Feature Service with a Child View created. To support the Swap
Layers workflow, we need to publish a second Hosted Feature Service so we have multiple target
Services that the Swap operation can interact with. Once the new Service has been published, we can
add the Parent/Child relationship to the View!

Here is an Item list showing a pair of Test ‘Watches, Warnings, and Advisory’ Hosted Feature Services
with their File Items, and a Hosted Feature View built from the original Service, not ending in ‘_C’:

Using the ‘-ListRelated’ Action Switch, we can list the related Items on the View, showing us that it
only has one relationship to the original Hosted Feature Service: ‘Test_NWS_Watches_Warnings’

The Child View is said to ‘rely’ on a Parent Service, as a source Data Item in this case.

v2.1.2 OverwriteFS.py February 21, 2022

22

Using the ‘-AddRelated’ Action Switch, we can relate a second Service to the View, adding the
‘Test_NWS_Watches_Warnings_C’ Hosted Feature Service to the mix.

Now you can see that the View is a Child to the second Service. This is just an idle relationship,
compared to the relationship to the original Service. Because the Layers in the View are pointing to

the Layers in the original Service, so the View ‘relies’ on the original Service for its data!

With the View properly configured to support two Parent Hosted Feature Service Items, we can check
the configuration to preview what Service Item the Swap Layers process will select.

From the output of running with the ‘-GetTarget’ Action Switch, we can see that the script has
identified the original Hosted Feature Service as the ‘Current’ source for the View, and it has identified

the newly added Service as the potential ‘Target’ source. Success, we are ready to support a Swap!

v2.1.2 OverwriteFS.py February 21, 2022

23

• Relationship Direction

So far, we have only reviewed relationships from the Child Item perspective. What does this look like
from the Parent Item Perspective?

If we run the script, listing the relationships for both Hosted Feature Services, we should see a more
complete picture of how Items relate to one another.

In the following screenshot, we can see that each Service Item ‘relies’ on, is a Child to, its Parent
Service Definition ‘File’ Item. This is a Data relationship. We can also see that each Service Item, is a
Parent to the Child View Item. This is a Service-to-Service relationship. And, we can tell that the Child
View Item is dependent on the Original Parent Service Item. Also, a Data relationship.

So, depending on what Item you are looking at, the Parent to Child or Child to Parent relationship can
be discovered and recognized by the relationship terminology:

- Parent to Child: ‘Is Relied on’, ‘Is Parent to’
- Child to Parent: ‘Relies on’, ‘Is Child to’

v2.1.2 OverwriteFS.py February 21, 2022

24

• Swapping Layers in a View

In certain instances, you may need to update or Overwrite a Hosted Feature Services that contains a
large amount of data. In these cases, a Service Overwrite that takes longer to update the Service than
the online Content Delivery Network (CDN) can reasonably support, will cause a service disruption to
end users. For this reason, the OverwriteFS script allows for a workflow that can toggle the Layers in a

View from one Hosted Feature Service to another, greatly reducing downtime during lengthy updates.

The only requirement for this workflow is that the View must have Multiple-Service relationships

added. See ‘Relating Views and Services’ topic specific to this requirement.

Basic concept is that for a View that is related to two Hosted Feature Services, say Service-A and
Service-B, the View may point to Feature Service-A while Feature Service-B is idle. During the
Overwrite process, Service-B is targeted to receive the Overwrite content while Users continue
accessing Service-A (by way of the View). Once Service-B is updated, the View is quickly cleared of all
Layers and the newly updated Layers in Service-B are added to the View. Service-A then becomes the
idle Service that is targeted for the next overwrite action.

* Note * A Hosted Feature View can only point to one Hosted Feature Service at a time!

* Tip * Share the View Publicly, but always keep the Services Private. Views are more forgiving and can
be directed to different Services should ever you need to replace the Service Item for some reason.

The Swap Layer option can be invoked with or without overwriting the Service. If you need to toggle
the Layers of the View so they point to the other Service, simply invoke the OverwriteFS tool and
specify the ‘-SwapLayers’ Action Switch.

In the following screenshot, we will Swap Layers from Service-A to Service-B on our Test example,
which contains 11 Layers in the Service! It also reports the elapsed time for various steps.

This process first identifies the Target Service, then it makes a backup of the Service and/or View
details to re-apply layer. Then it Drops the Layers in the View and adds the Layers from the Target
Service. Lastly, it re-applies the Layer, Service, and Service Item properties as needed from the backup
taken earlier. Remember, Overwriting a Service resets it to the Published state!

v2.1.2 OverwriteFS.py February 21, 2022

25

v2.1.2 OverwriteFS.py February 21, 2022

26

Python Code Sample

• A standalone example that downloads a file from a Web URL and Overwrites a Service.

‘OverwriteFS_Sample.py’, included this download, is Python example you can run locally.

v2.1.2 OverwriteFS.py February 21, 2022

27

Exploring OverwriteFS Functions

• Function: updateRelationships

Function that will list, add, or remove a Child to Parent relationships on Items. Typically used for
relating Service Items to a View or a Service Item to its File Item.

v2.1.2 OverwriteFS.py February 21, 2022

28

• Function: getFeatureServiceTarget

Function that returns the targeted Service Item details when given a View that has Multi-Service
relationships.

v2.1.2 OverwriteFS.py February 21, 2022

29

• Function: swapFeatureViewLayers

Function that will Swap View Layers to Idle Service Layers or initiate the Overwrite and then Swap
Layers depending on the presence of the <updateFile> property.

v2.1.2 OverwriteFS.py February 21, 2022

30

• Function: overwriteFeatureService

Function that will perform the Service Overwrite depending on the presence of the <updateFile>
property. Can also initiate the Convert option if present.

v2.1.2 OverwriteFS.py February 21, 2022

31

Online Notebook Code Sample

• A Shared Notebook example that downloads a file from a Web URL and Overwrites a Service.

‘Sample OverwriteFS Notebook’, https://www.arcgis.com/home/item.html?id=cd5819375aca40a3a7f8b3a269404c2c

https://www.arcgis.com/home/item.html?id=cd5819375aca40a3a7f8b3a269404c2c
https://www.arcgis.com/home/item.html?id=cd5819375aca40a3a7f8b3a269404c2c

v2.1.2 OverwriteFS.py February 21, 2022

32

Guidance, Limitations, and Known Issues

• Guidance
o Test, test, test. It is always a good idea to try out new functionality on a Test Service or

Item that has no real importance. You should become familiar with script behavior and
experiment to see how it interacts with your content and environment. Don’t be afraid to
break a test Service or Item, you can always discard it!

o When specifying parameters on the command line, remember that a space is used to

separate parameters. If you are entering an Item Title that happens to include a space, be
sure to surround the text with double quotes to ensure it is treated as a single parameter!
Ex: “My Test Service”, and don’t confuse a single quote ‘, with a double quote “.

o When considering schema changes, always ‘add’ fields to the end of the schema, as not to

disrupt existing users. Never ‘delete’ a field, this will most definitely disrupt users, hide
them instead. Some field types can be changed, like a Double replacing an Integer. The
Double has a larger capacity and will accept Integer values. An Integer will accept a Short.
Always go from small type to a large type and you are not likely to experience an issue.

o When making schema changes to a View that is supported by Multiple Services, consider

updating the Idle Service manually first, without invoking the Swap Layers. This will give
you a chance to verify the structural changes for any possible issues, a QA/QC process. You
can invoke the Swap Layers action manually as well when the updated Service is vetted!
Then repeat the change on the now idle Service. You can always Swap Layers back to the
original Service if the View encounters unforeseen issues! * UPDATE * This now support
the ‘-UpdateTarget’ Action Switch, allowing automatic Target update and then stopping
for QA/QC process. Once considered to pass inspection, rerun with just “Swap Layers”!

o When creating multiple Services to use with a View, each Service will require its own File

Item with a uniquely named file. Think about naming them with a ‘A’, ‘B’ or ‘1’, ‘2’ type of
sequence in the title to keep track of which one goes with which Service.

o When considering creating multiple Views to support a desired content offering, examine

the reasoning behind needing multiple Views. Are you needing to hide certain data fields
from the target users? Do you need to add a Definition Query to block access to certain
rows? Are you wanting to limit access to a given Geography? Is security required to only
share the View with certain users? These are all good reasons to leverage a View. But if all
you need or want is different Symbology, consider creating a ‘Feature Layer’ Item instead.
This uses the same source Service as a View of Service Item, but it will store the Symbology
and Popups in the data property of the Feature Layer Item, separate from the original
View or Service. As a bonus, they only create a content Item, no additional Service or
duplication of Data. You can create one right from the ‘Visualization’ tab on any Service or
View, whether you own it or not! Plus, these are easily shared and consumed just like a
View or Service Item is. If one is created from a Swap Layers supported View, the Feature
Layer Item will also benefit from the Swap since it points to the View.

v2.1.2 OverwriteFS.py February 21, 2022

33

• Limitations
o When Swapping Layers on a View, where the parent Service may have multiple Views, this

script does not currently support cascading the Swap to these additional Views. You would
need to perform a Swap Layers request on each View. This cascading capability is under
consideration for a future release!

o This script always assumes your Items exist. It is not designed to “create” an Item.

o Currently, this script does not have the ability to add new layers to a View that did not

already have them. Referring to cases where Overwriting a Service may add new Layers
because of a schema change. This capability is under consideration for a future release!

o A Service cannot be Overwritten if it supports a Tile, Vector Tile, OGC, or WFS Service.

Damage to these Service type can result.

• Known Issues
o In rare cases, reapplying altered Service or View properties can fail. Not by way of an

error, nay they will complete successfully yet never be applied at the back end. We are
working to remedy this in future releases, but you can leverage the ‘-PersistProps’ option
to ensure that critical properties are never lost! Most notable is Post-Publishing
Symbology changes. They are applied directly to the Service of a View or Service Item.
When Overwriting, the Service details are returned to their original Published state. This
forces the script to reapply the most recently backed up details back to the Service, which
has the potential of ‘not taking’ on the Service side depending on how busy the
environment is at the time.

o The Python API used by this script, currently v1.9.1, cannot upload a file larger than
2,147,483,647 bytes! When attempting to overwrite a Service or File Item with a file
larger than this, the tool will error out with a message “Source file too large!”.

v2.1.2 OverwriteFS.py February 21, 2022

34

Release History

• April 2019, v1.4.1: Initial public release.

• April 2020, v1.4.2: (Internal) Updated to detect if Profile account password exists, to help prevent
Task locking up due to ‘Enter Password’ prompt initiated by Python API if the password is missing!

• May 2020, v1.4.3: Finalize check for Profile account password, exit if not populated. Enhanced
Profile connection to allow using your active ArcGIS Pro account.

• July 2020, v1.4.4: Corrected URL Header access issue during downloads, allowing access to FTP
data sources.

• September 2021, v2.0.0: Added ‘-h’, ‘-SwapLayers’, ‘-GetTarget’, ‘-ListRelated’, ‘-AddRelated’, ‘-
RemoveRelated’, and ‘-Convert’ Action Switches. Added ‘-OutPath’, ‘-NoTimeSeries’, ‘-
NoIndexes’, ‘-NoTouch’, ‘-NoWait’, ‘-NoProps’, ‘-PersistProps’, ‘-DryRun’, ‘-AllowPWprompt’, ‘-
LessDetail’, ‘-MoreDetail’, and ‘-Password’ Option Switches. Added workflow to leverage two
Hosted Feature Services supporting one View, alternating Overwrite to Idle Service then Swapping
Layers of View to point to newly updated Service. Supports download data Conversion prior to
Overwrite. Supports repair of File Item to Service relationship, enabling Service Overwrite
capability. Added Service and View property backup and restoration.

• September 2021, v2.0.1: Patch to update ‘overwriteFeatureService’ Function to correctly report
outcome of download and conversion when no changes required. Should be reporting a status of
None! Also updated command line execution exit value to report -1 on a ‘None’ status outcome.

• October 2021, v2.0.2: Patch to workflow when Service has one or more Views. Overwriting a
Service will cause the ArcGIS backend environment to update the View details like Layer extent.
We detected an issue with the most recent ArcGIS Online release where following a Service
Overwrite the Layer Extent on the Views are set to the first Feature Extent, not the Extent of all
Features. This Patch touches the View’s Service Details if its Layers are not Time Enabled,
correcting the issue. Also included in this release is an update to the
‘Converters/Support/datetimeUtils.py’ script. See its documentation for full details!

• November 2021, v2.1.0: Removed Layer Optimization Cancelation when Overwriting, not needed!
Added support for Overwriting of ‘File’ item content, not just Feature Services. Revised CRC check
logic to pick up altered content downloaded or converted, helping to NOT update a Service if the
data has not changed. Added QA/QC compliant ‘-UpdateTarget’ Action Switch to command line
parameters and ‘noSwap’ property to ‘swapFeatureLayers’ function. Added automatic
Optimization cancelation to Overwrite workflow, allowing user defined multiscale settings to be
used, and allows for Job tracking. Added ‘-IgnoreAge’ Option Switch to command line parameters
and ‘ignoreAge’ property to ‘swapFeatureLayers’ and ‘overwriteFeatureService’ functions.
Renamed conversion Module ‘Rss2Json’ to ‘Xml2GeoJSON’, reflecting its enhanced capabilities.
Added new conversion Module ‘Json2GeoJSON’ to allow for Json data manipulation.

• December 2021, v2.1.1: Update to Conversion routines only! Patched ‘Json2GeoJSON’ and
‘Xml2GeoJSON’ to handle null Z-value Geometries, improved row level error trapping, and added
Deprecation Message to retired Converter ‘Rss2Json’.

• February 2022, v2.1.2: Patch to detect case-insensitive field indexes. Added
‘ignoreDataItemCheck’ property to ‘getFeatureServiceTarget’ function, allowing Swap Layers
using Services that do not have an associated data file item when not overwriting. Added service
manager refresh steps to processing, to make sure we always receive current details. Patch
overwrite and swap layers processing to accommodate change in Python API v2 ‘table’ properties.
Updated ‘updateRelationships’ function to return a properly hydrated outcome response,

v2.1.2 OverwriteFS.py February 21, 2022

35

detailing the call results (previously overlooked). Patch updates to ‘Json2GeoJSON’ and
‘Xml2GeoJSON’.

