Building a JavaScript API Application to Draw Features Using Client-Side Data
Having dynamic layers is one of the many exciting enhancements to the map service available with ArcGIS 10.1 for Server release. Publishing a map service with dynamic layers enabled allows you to modify the renderer of a layer, reorder a layer, or even add a new layer from one of the registered workspaces and have it drawn on the server side on a per-request basis. Server-side drawing is very useful, especially when it gets expensive to download too many features for client-side rendering. You can build web application with JavaScript, Flex, or Silverlight API to take advantage of this new functionality.

For this application, you would need a map service with US Counties layer with FIPS code and a CSV file The CSV file provided here contains the population differences for each county between the last two censuses using Microsoft Excel. The file also contains an additional field named FIPS, which is used to join that data to the county layer in the map service.
[bookmark: _GoBack][image:]

Here are details steps to get all necessary services and the JavaScript application running on your server:

1. Extract contents:
a. unzip map&data.zip into your local drive e.g. C:\GISdata
b. unzip app.zip into your webserver root folder e.g. in case of IIS, copy the contents of the zip file into c:\inetpub\wwwroot

2. Give read and write privilege to ArcGIS Server user:
Since the client-side data will be converted and put in the same file geodatabase where the Counties feature class resides (to find out why the same file geodatabase is used, see the explanation below), make sure the ArcGIS Server User has both read and write permission to the folder that contains the MXD and the file geodatabase.

3. Create a map service:
a) Open Counties.mxd in ArcMap and select Share As > Service from the File menu in ArcMap to start the publishing process.
Note: The MXD contains a layer pointing to the Counties feature class from a file geodatabase. The second layer gives a show effect to make the map pleasing aesthetically.
b) Type in a name for the map service.
c) Click Next buttons 3 times to open Service Editor window.
d) Click the Analyze button, look at the result in Prepare window, and you would notice a high severity warning saying that layer’s data source is not registered with the server. It is important that you register the folder that contains the file geodatabase to make sure the ArcGIS Server process has access to the database and data would not be copied to the server while publishing the map or GP service in the steps that follow.

[image:]
e) Right-click the warning in the Prepare window and select Register Data Source with Server.
f) Click on Analyze again button to make sure that warning is gone.
g) In the Service Editor window, click the Mapping option under Capabilities on the left pane, and on the right pane, click Allow per request modification of layer order and symbology to enable dynamic layers for the map service.
[image:]
h) Because the application needs to join the Counties layer to a table that is not in the source map document, you need to register the same file geodatabase that the map document uses as a dynamic workspace. Click the Manage button to open Dynamic Workspace Manager where you will register the file geodatabase. Make sure to provide a unique identifier for that workspace, which would later be used by the application when defining the right-side table in the join.
[image:]
i) Now that everything is all set, click the Publish button to publish.

4. Create a geoprocessing service
a) Browse into ConvertCSVtoFC.tbx in ArcCatalog. Modify the path of the file geodatabase set inside the model and the script.

Note: At ArcGIS 10.1, we don’t publish a GP model or tool; instead, a GP result gets published.

b) Execute both GP and script tools, switched to the Geoprocessing Results window, right-clicked one of the results, and chose Share As >> Geoprocessing Service from the Context menu to start the publishing process.
[image:]
c) In the service editor, add another result to have two tasks in the same GP service. Also, make sure the Uploads checkbox is checked, which, as the name suggests, allows a client to upload any file to the server.
[image:]
d) Choose the service to be a synchronous service, as it would not take too long to convert or delete a table.

e) Click the Publish button to create the service to get it all done on the server side.
5. Open UseClientData.html from your webserver’s root folder in a text editor. Go to line number 53 and update all URLs to point to services running on your machine.

FAQs:
Geoprocessing Service:
1. What are considered for the ConvertToFGDB geoprocessing model?
a) To avoid overwriting an existing table, the model generates a unique name using the Calculate Value GP tool. Since names may start with numbers or contain hyphens which are invalid for a table name in file geodatabase, the model add the prefixes “_ags_” to each name and replaces all hyphens with underscore. The prefix also helps clean up in the end.
Here is the Python code used by the Calculate Value tool:
Expression:
calc()

Code block:
import uuid
def calc():
 s ='_ags_{}'.format(uuid.uuid1())
 return s.replace("-","_")
b) The model converts the input CSV file into a table in the same file geodatabase where Counties feature class resides. For the best performance, the right-side table in the join should reside in the same workspace where the left-side table is stored.
c) Since the conversion process drops leading zeroes in FIPS code (which is text, not numbers), it puts those leading zeroes back and copy them into a new field; otherwise, there would be mismatches, and counties would either not be drawn or be drawn with the default symbol.
d) Finally the model creates an index on the newly created field. As you are aware, you should always create indexes on the field that takes part in the join process; otherwise performance will be sluggish in many cases.

2. Why is the output of ConvertToFGDB model a string?
The output is the name of the table that gets created during the conversion process. The client application will use that name to define the join in the export request to a map service.
3. What does DeleteTempTable task do?
The purpose of this task is to delete those temporary tables generated by the conversion GP task. To avoid any unwanted removal of a feature class or table from the workspace, a very simple technique is used: the script always adds “_ags_” as a prefix to the input name. It is the application’s responsibility to remove the prefix from the file name (returned by the converter GP service task) before passing it to the delete GP service task.
4. What do I need to use a script for the cleanup process?
There is a bug that prevents publishing a result of the Delete Tool directly, even when it is wrapped up in a model.

JavaScript Application
1. What needs to be done to upload a file?
a) Define an html form containing at least an input element of type file.
Note: The name of <input type=’file’> tag matches with the input parameter of the upload operation.
[image:]

<form id="uploadForm" method="post" enctype="multipart/form-data">
 <input type="file" id="file" name="file" />
</form>
b) Define another input element outside of the form that triggers a JavaScript function when clicked.
<input type="button" value="Upload & Draw" onclick="uploadFile();"/>

//JavaScript code that gets executed when ‘Upload & Draw’ button is clicked
function uploadFile() {
 ...
 var requestHandle = esri.request({
 url: "http://localhost/.../upload",
 form: dojo.byId("uploadForm"),
 content: { f: "json" },
 handleAs: "text",
 load: requestSucceeded,	//function that gets called on success
 error: requestFailed	//function that gets called on failure
 });

}
c) The response for a successful upload includes an ID for the uploaded item. It’s important to hold onto that item ID, which becomes the input for the ConvertToFGDB GP task. Here is an example of a successful operation’s response:
{"success":true,"item":{"itemID":"i0f4275b7-33d6-4909-b64a-e234da131054","itemName":"USPopChange2010_2000.csv","description":null,"date":1336633751400,"committed":true}}
2. The input type of ConvertToFGDB GP task is a GPDataFile, why am I passing a JSON string as an input?
The input JSON string refers to an uploaded file. This is how we need to tell a GP task to use an upload file as an input:
{"itemID":"i0f4275b7-33d6-4909-b64a-e234da131054"}

3. How to set up a join for a sublayer in a dynamic map service layer?
It is kind of verbose to define a join, which is viewed as a data source to a layer and is composed of two layers or tables that already exist in a map service or dynamically added from a registered workspace layers/tables. In this application, a Counties layer already exists in the map service, but the table needs to be added dynamically from the registered workspace.

The concept of a layer’s source and the hierarchical relationship between types of data sources are nicely explained here.

/* a) source of left table for the join pointing to the first layer in the map service */
var leftTableSource = new esri.layers.LayerMapSource();
leftTableSource.mapLayerId = 0;

/* b) data source for the right table source from a registered workspace */
var rightTableDataSource = new esri.layers.TableDataSource();
//Id of the workspace registered to the map service during publication
rightTableDataSource.workspaceId = "fgdb_county";
//the table name (returned by converter GP Task)
rightTableDataSource.dataSourceName = "_ags_0a5ffc0f_9abb_11e1_a0a5_5c260a2089f6";

/* c) source of right table for the join /*
var rightTableSource = new esri.layers.LayerDataSource();
rightTableSource.dataSource = rightTableDataSource;

/* d) set up the join data source */
var joinDataSource = new esri.layers.JoinDataSource();
joinDataSource.leftTableSource = leftTableSource;
joinDataSource.rightTableSource = rightTableSource;
joinDataSource.leftTableKey = "FIPS";
joinDataSource.rightTableKey = "FIPS_TXT"; //auto-generated field described in a section above
joinDataSource.joinType = "left-outer-join";

/* e) source for dynamic layer with join that will be added to the map service layer */
var censusJoinLayerSource = new esri.layers.LayerDataSource();
censusJoinLayerSource.dataSource = joinDataSource;

......

/* f) adding the new layer to the map service layer */
//you can create dynamicLayerInfos array from scratch or by calling a helper function. I called the helper function so that I could preserve other layers in that map service layer.

var dynamicLayerInfos = censusMapServiceLayer.createDynamicLayerInfosFromLayerInfos();

//replacing the source of the first layer with joinDataSource
dynamicLayerInfos [0].source = application.censusJoinLayerSource;

//setting dynamicLayerInfos without refreshing the map, since renderer is not assigned yet
censusMapServiceLayer.setDynamicLayerInfos(dynamicLayerInfos, true)

4. How does the code look like that sets a renderer to a sublayer in a dynamic map service layer?
function createJoinLayerDrawingOptions(renderer) {
 var layerDrawingOptions = [];
 var layerDrawingOption = new esri.layers.LayerDrawingOptions();
 layerDrawingOption.renderer = renderer;
 layerDrawingOptions[0] = layerDrawingOption;
 return layerDrawingOptions;
}

	application.censusMapServiceLayer.setLayerDrawingOptions(createJoinLayerDrawingOptions(renderer));
5. What does generateRenderer task do?
GenerateRenderer is another operation, available for an existing or dynamically added layer or table that helps to generate a renderer by a map service. The idea is that as long as the server has access to the data, this operation can be called on the layer or table and can get a renderer back based on the number of class breaks, classification method, color ramp, etc. For more information on this task, please refer to the help topic on the generateRenderer task. The best part of this operation/task is that it saves one from writing hundreds, if not thousands, of lines of code to compute breaks, apply a color ramp and does other things on top of having the burden of downloading all the data on the client side (which is also limited by the server-side maxRecordCount property).
Useful links
Here are some links to related samples:

ArcGIS API for JavaScript
· Change Class Breaks Renderer of a Layer within a Dynamic Map Service
· Reorder Layers within a Dynamic Map Service

ArcGIS API for Flex
· Adding new Layer from a Dynamic Workspace
· Change LayerDrawingOptions

ArcGIS API for Silverlight
· Update Renderer and Reorder Layer
· DynamicLayers in XAML

image4.png

image5.png

image6.png

image7.png

image1.png

image2.png

image3.png

